3.1.98 \(\int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\) [98]

Optimal. Leaf size=174 \[ \frac {35 \sqrt {a} \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {35 a \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {35 a \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {7 a \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}} \]

[Out]

35/64*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+35/64*a*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+
35/96*a*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+7/24*a*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
+1/4*a*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 174, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3890, 3859, 209} \begin {gather*} \frac {35 \sqrt {a} \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{64 d}+\frac {35 a \sin (c+d x)}{64 d \sqrt {a \sec (c+d x)+a}}+\frac {a \sin (c+d x) \cos ^3(c+d x)}{4 d \sqrt {a \sec (c+d x)+a}}+\frac {7 a \sin (c+d x) \cos ^2(c+d x)}{24 d \sqrt {a \sec (c+d x)+a}}+\frac {35 a \sin (c+d x) \cos (c+d x)}{96 d \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(35*Sqrt[a]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(64*d) + (35*a*Sin[c + d*x])/(64*d*Sqrt[a
 + a*Sec[c + d*x]]) + (35*a*Cos[c + d*x]*Sin[c + d*x])/(96*d*Sqrt[a + a*Sec[c + d*x]]) + (7*a*Cos[c + d*x]^2*S
in[c + d*x])/(24*d*Sqrt[a + a*Sec[c + d*x]]) + (a*Cos[c + d*x]^3*Sin[c + d*x])/(4*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3890

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a*Cot[e
 + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a*((2*n + 1)/(2*b*d*n)), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rubi steps

\begin {align*} \int \cos ^4(c+d x) \sqrt {a+a \sec (c+d x)} \, dx &=\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {7}{8} \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {7 a \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {35}{48} \int \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {35 a \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {7 a \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {35}{64} \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {35 a \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {35 a \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {7 a \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {35}{128} \int \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {35 a \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {35 a \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {7 a \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}-\frac {(35 a) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}\\ &=\frac {35 \sqrt {a} \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {35 a \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {35 a \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {7 a \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a \cos ^3(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.10, size = 47, normalized size = 0.27 \begin {gather*} \frac {2 \, _2F_1\left (\frac {1}{2},5;\frac {3}{2};1-\sec (c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(2*Hypergeometric2F1[1/2, 5, 3/2, 1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/d

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(398\) vs. \(2(150)=300\).
time = 0.23, size = 399, normalized size = 2.29

method result size
default \(-\frac {\left (-105 \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}-315 \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}-315 \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}-105 \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {7}{2}} \sin \left (d x +c \right )+768 \left (\cos ^{8}\left (d x +c \right )\right )+128 \left (\cos ^{7}\left (d x +c \right )\right )+224 \left (\cos ^{6}\left (d x +c \right )\right )+560 \left (\cos ^{5}\left (d x +c \right )\right )-1680 \left (\cos ^{4}\left (d x +c \right )\right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{3072 d \cos \left (d x +c \right )^{3} \sin \left (d x +c \right )}\) \(399\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3072/d*(-105*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+
c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)^3*sin(d*x+c)*2^(1/2)-315*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*arctanh(1/2*(-
2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)-315*(-2*cos(
d*x+c)/(1+cos(d*x+c)))^(7/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*c
os(d*x+c)*sin(d*x+c)*2^(1/2)-105*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c
)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(7/2)*sin(d*x+c)+768*cos(d*x+c)^8+128*cos(d*x+c)^7+224*cos(d*x+c)^6+
560*cos(d*x+c)^5-1680*cos(d*x+c)^4)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)^3/sin(d*x+c)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 6638 vs. \(2 (150) = 300\).
time = 0.87, size = 6638, normalized size = 38.15 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/768*(2*(cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*
x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)^(3/4)*((36*(sin(4*d*x + 4*c)^3 + (c
os(4*d*x + 4*c)^2 - 2*cos(4*d*x + 4*c) + 1)*sin(4*d*x + 4*c))*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*
c)))^2 + 9*cos(4*d*x + 4*c)^2*sin(4*d*x + 4*c) + 9*sin(4*d*x + 4*c)^3 + 36*(sin(4*d*x + 4*c)^3 + (cos(4*d*x +
4*c)^2 + 2*cos(4*d*x + 4*c) + 1)*sin(4*d*x + 4*c))*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 9*
(2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))*sin(4*d*x + 4*c) - 2*(cos(4*d*x + 4*c) + 1)*sin(1/2*ar
ctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + sin(4*d*x + 4*c))*cos(3/4*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4
*c))) + 36*(sin(4*d*x + 4*c)^3 + (cos(4*d*x + 4*c)^2 - cos(4*d*x + 4*c))*sin(4*d*x + 4*c))*cos(1/2*arctan2(sin
(4*d*x + 4*c), cos(4*d*x + 4*c))) - (32*(cos(4*d*x + 4*c)^2 + sin(4*d*x + 4*c)^2 - 2*cos(4*d*x + 4*c) + 1)*cos
(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 32*(cos(4*d*x + 4*c)^2 + sin(4*d*x + 4*c)^2 + 2*cos(4*d*
x + 4*c) + 1)*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 8*cos(4*d*x + 4*c)^2 + 2*(16*cos(4*d*x
+ 4*c)^2 + 16*sin(4*d*x + 4*c)^2 - 7*cos(4*d*x + 4*c) - 9)*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))
) + 8*sin(4*d*x + 4*c)^2 - 2*(64*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))*sin(4*d*x + 4*c) + 7*sin
(4*d*x + 4*c))*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 9*cos(4*d*x + 4*c))*sin(3/4*arctan2(sin(
4*d*x + 4*c), cos(4*d*x + 4*c))) - 36*(4*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))*sin(4*d*x + 4*c)
^2 + sin(4*d*x + 4*c)^2)*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))))*cos(3/2*arctan2(sin(1/2*arctan2
(sin(4*d*x + 4*c), cos(4*d*x + 4*c))), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)) - (9*cos(4*d
*x + 4*c)^3 + 4*(9*cos(4*d*x + 4*c)^3 + (9*cos(4*d*x + 4*c) + 8)*sin(4*d*x + 4*c)^2 - 10*cos(4*d*x + 4*c)^2 -
7*cos(4*d*x + 4*c) + 8)*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + (9*cos(4*d*x + 4*c) + 8)*sin(
4*d*x + 4*c)^2 + 4*(9*cos(4*d*x + 4*c)^3 + (9*cos(4*d*x + 4*c) + 8)*sin(4*d*x + 4*c)^2 + 26*cos(4*d*x + 4*c)^2
 + 25*cos(4*d*x + 4*c) + 8)*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 8*cos(4*d*x + 4*c)^2 - (3
2*(cos(4*d*x + 4*c)^2 + sin(4*d*x + 4*c)^2 - 2*cos(4*d*x + 4*c) + 1)*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d
*x + 4*c)))^2 + 32*(cos(4*d*x + 4*c)^2 + sin(4*d*x + 4*c)^2 + 2*cos(4*d*x + 4*c) + 1)*sin(1/2*arctan2(sin(4*d*
x + 4*c), cos(4*d*x + 4*c)))^2 + 8*cos(4*d*x + 4*c)^2 + 2*(16*cos(4*d*x + 4*c)^2 + 16*sin(4*d*x + 4*c)^2 - 7*c
os(4*d*x + 4*c) - 9)*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 8*sin(4*d*x + 4*c)^2 - 2*(64*cos(1
/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))*sin(4*d*x + 4*c) + 7*sin(4*d*x + 4*c))*sin(1/2*arctan2(sin(4*d
*x + 4*c), cos(4*d*x + 4*c))) + 9*cos(4*d*x + 4*c))*cos(3/4*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 4*(
9*cos(4*d*x + 4*c)^3 + (9*cos(4*d*x + 4*c) + 8)*sin(4*d*x + 4*c)^2 - cos(4*d*x + 4*c)^2 - 8*cos(4*d*x + 4*c))*
cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) - 9*(2*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)
))*sin(4*d*x + 4*c) - 2*(cos(4*d*x + 4*c) + 1)*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + sin(4*d*
x + 4*c))*sin(3/4*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) - 4*(4*(9*cos(4*d*x + 4*c) + 8)*cos(1/2*arctan2
(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))*sin(4*d*x + 4*c) + (9*cos(4*d*x + 4*c) + 8)*sin(4*d*x + 4*c))*sin(1/2*ar
ctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))))*sin(3/2*arctan2(sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)
)), cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))) + 1)))*sqrt(a) - 6*(cos(1/2*arctan2(sin(4*d*x + 4*c),
 cos(4*d*x + 4*c)))^2 + sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 2*cos(1/2*arctan2(sin(4*d*x +
 4*c), cos(4*d*x + 4*c))) + 1)^(1/4)*((64*(cos(4*d*x + 4*c)^2 + sin(4*d*x + 4*c)^2 + 2*cos(4*d*x + 4*c) + 1)*s
in(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^3 + 20*(sin(4*d*x + 4*c)^3 + (cos(4*d*x + 4*c)^2 - 2*cos(4
*d*x + 4*c) + 1)*sin(4*d*x + 4*c) + 8*(cos(4*d*x + 4*c)^2 + sin(4*d*x + 4*c)^2 - 2*cos(4*d*x + 4*c) + 1)*sin(1
/4*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c))))*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 5*co
s(4*d*x + 4*c)^2*sin(4*d*x + 4*c) + 5*sin(4*d*x + 4*c)^3 + 4*(5*sin(4*d*x + 4*c)^3 + (5*cos(4*d*x + 4*c)^2 + 1
0*cos(4*d*x + 4*c) - 11)*sin(4*d*x + 4*c) - 64*cos(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))*sin(4*d*x
+ 4*c) + 40*(cos(4*d*x + 4*c)^2 + sin(4*d*x + 4*c)^2 + 2*cos(4*d*x + 4*c) + 1)*sin(1/4*arctan2(sin(4*d*x + 4*c
), cos(4*d*x + 4*c))))*sin(1/2*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))^2 + 10*(2*sin(4*d*x + 4*c)^3 + 2*(
cos(4*d*x + 4*c)^2 - cos(4*d*x + 4*c))*sin(4*d*x + 4*c) + cos(1/4*arctan2(sin(4*d*x + 4*c), cos(4*d*x + 4*c)))
*sin(4*d*x + 4*c) + (16*cos(4*d*x + 4*c)^2 + 16*sin(4*d*x + 4*c)^2 - 17*cos(4*d*x + 4*c) + 1)*sin(1/4*arctan2(
sin(4*d*x + 4*c), cos(4*d*x + 4*c))))*cos(1/2*a...

________________________________________________________________________________________

Fricas [A]
time = 2.83, size = 310, normalized size = 1.78 \begin {gather*} \left [\frac {105 \, \sqrt {-a} {\left (\cos \left (d x + c\right ) + 1\right )} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (48 \, \cos \left (d x + c\right )^{4} + 56 \, \cos \left (d x + c\right )^{3} + 70 \, \cos \left (d x + c\right )^{2} + 105 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{384 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {105 \, \sqrt {a} {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (48 \, \cos \left (d x + c\right )^{4} + 56 \, \cos \left (d x + c\right )^{3} + 70 \, \cos \left (d x + c\right )^{2} + 105 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{192 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/384*(105*sqrt(-a)*(cos(d*x + c) + 1)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x
 + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(48*cos(d*x + c)^4 + 56*cos(d*x
 + c)^3 + 70*cos(d*x + c)^2 + 105*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d
*x + c) + d), -1/192*(105*sqrt(a)*(cos(d*x + c) + 1)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x +
c)/(sqrt(a)*sin(d*x + c))) - (48*cos(d*x + c)^4 + 56*cos(d*x + c)^3 + 70*cos(d*x + c)^2 + 105*cos(d*x + c))*sq
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \cos ^{4}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*cos(c + d*x)**4, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 571 vs. \(2 (150) = 300\).
time = 0.99, size = 571, normalized size = 3.28 \begin {gather*} -\frac {\sqrt {2} {\left (\frac {105 \, \sqrt {2} \sqrt {-a} a \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} - \frac {8 \, {\left (279 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{14} \sqrt {-a} a + 285 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{12} \sqrt {-a} a^{2} - 4605 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{10} \sqrt {-a} a^{3} + 37281 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{8} \sqrt {-a} a^{4} - 35643 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} \sqrt {-a} a^{5} + 9175 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} \sqrt {-a} a^{6} - 1311 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} \sqrt {-a} a^{7} + 43 \, \sqrt {-a} a^{8}\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )}^{4}}\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{768 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/768*sqrt(2)*(105*sqrt(2)*sqrt(-a)*a*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)
^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a
))^2 + 4*sqrt(2)*abs(a) - 6*a))/abs(a) - 8*(279*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^
2 + a))^14*sqrt(-a)*a + 285*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^12*sqrt(-a)*
a^2 - 4605*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*sqrt(-a)*a^3 + 37281*(sqrt
(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*sqrt(-a)*a^4 - 35643*(sqrt(-a)*tan(1/2*d*x
+ 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*sqrt(-a)*a^5 + 9175*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a
*tan(1/2*d*x + 1/2*c)^2 + a))^4*sqrt(-a)*a^6 - 1311*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2
*c)^2 + a))^2*sqrt(-a)*a^7 + 43*sqrt(-a)*a^8)/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2
 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^4)*sgn(cos(d*x +
 c))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^4\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4*(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^4*(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________